How a few millimeters of Russian rock helped unwind a meteorite mystery

Meteorites that struck Earth more than 466 million years ago were very different than those we see today, according to new research published in Nature Astronomy.

|
Marco Ugarte/AP/File
People look at 'La Concepcion' meteorite at the Ex Teresa Arte Actual Museum in Mexico City on Monday, Oct. 10, 2016. The Meteorite was found in the state of Chihuahua during the XVII century and is being displayed with special instruments that create sounds based on the meteorite’s surface irregularities and magnetic field.

Are the meteorites of today just like the ones that used to strike our planet hundreds of millions of years ago?

The answer to that question is of interest not just for its own sake, but for the insights it can provide into the evolution of our solar system’s asteroid belt, as well as the interaction of other celestial bodies in general.

And, according to some fresh research published in the journal Nature Astronomy, the answer is a resounding "no."

"We found that the meteorite flux, the variety of meteorites falling to Earth, was very, very different from what we see today," lead author Philipp Heck, an associate curator at The Field Museum in Chicago, said in a press release.

The key to understanding how that change came to pass lies in a cataclysmic collision that took place 466 million years ago, when something struck an asteroid, tore it apart, and sent chunks of rock hurtling through space. Ever since, the majority of meteorites – flying bits of debris ripped off asteroids, comets, moons, or planets when they collide – peppering Earth’s surface have originated from that one event.

In seeking to study meteorites originating even earlier, Dr. Heck’s colleagues traveled to a Russian river valley, where an ancient seafloor lies exposed. There, they were able to source micrometeorites, hunks of space rock measuring no more than 2 millimeters in diameter, from the time in question.

Extracting the samples and dissolving them in acid left one thing: microscopic chromite crystals.

"Chrome-spinels, crystals that contain the mineral chromite, remain unchanged even after hundreds of millions of years," Heck explained. "Since they were unaltered by time, we could use these spinels to see what the original parent body that produced the micrometeorites was made of."

Examining those spinels, scientists discovered the striking differences between the meteorites of today and those of times gone by. They found that prior to the big collision, 34 percent of meteorites were of a kind called primitive achondrites; today, that figure stands at 0.45 percent.

Heck says that studying the meteorite record just from the past few hundred million years since that one explosive collision is like looking outside during a snowstorm and concluding that the weather on Earth is always snowy: The debris from that one event is likely to have masked the bigger picture.

"Ultimately, we want to study more windows in time," said Heck, "not just the area before and after this collision during the Ordovician period, to deepen our knowledge of how different bodies in [the] solar system formed and interact with each other."

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to How a few millimeters of Russian rock helped unwind a meteorite mystery
Read this article in
https://www.csmonitor.com/Science/Spacebound/2017/0123/How-a-few-millimeters-of-Russian-rock-helped-unwind-a-meteorite-mystery
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe