Subscribe

Astronomers spot quasar fueled by the mass of 12 billion suns

Scientists say they have found the brightest quasar yet in the early universe, a region around a supermassive black hole that blazes with the brightness of 420 trillion suns.

  • close
    Artist's concept of a quasar (bright area with rays) embedded in the centre of a galaxy.
    NASA/JPL-Caltech/T. Pyle (SSC)
    View Caption
  • About video ads
    View Caption
of

Sen—An international team of astronomers, combining data from five different observatories, have found the brightest quasar ever discovered in the early Universe, powered by the most massive black hole yet known, equivalent to 12 billion Suns.

First discovered in 1963, quasars are the most powerful objects beyond our Galaxy. They shine as the central supermassive black hole actively collects surrounding material, releasing a huge amount of their gravitational energy.

Astronomers have discovered more than 200,000 quasars, with ages ranging from 0.7 billion years after the Big Bang to today. However, despite of their high luminosity, they still appear faint due to their large distance away from us, and they are extremely rare on the sky, which make them very difficult to find.

The quasar, labelled SDSS J0100+2802, has a central black hole with a mass of 12 billion solar masses and the luminosity of 420 trillion Suns. By comparison, our own Milky Way Galaxy has a black hole with a mass of only three million solar masses at its centre.

The black hole that powers this new quasar is four thousand times heavier than ours. SDSS J0100+2802 is also seven times brighter than the most distant quasar known (which is 13 billion years away) making it one of the most distant quasars discovered.

The quasar was discovered using data from the 2.4 metre Lijiang Telescope (LJT) in China, the 6.5m Multiple Mirror Telescope (MMT), and the 8.4m Large Binocular Telescope (LBTO) in USA, the 6.5m Magellan Telescope in Las Campanas Observatory, Chile, and the 8.2m Gemini North Telescope in Hawaii.

For Christian Veillet, Director of the LBTO, this discovery demonstrates both the power of international collaborations and the benefit of using a variety of facilities spread throughout the world.

Quasars evolved only about nine hundred million years after the Big Bang, close to the end of the cosmic dawn when light from the earliest generations of galaxies and quasars were thought to transformed the Universe. So how can a quasar so luminous, and a black hole so massive, form so early in the history of the Universe?

"This ultra-luminous quasar with a 12-billion solar mass black hole provides a unique laboratory to the study of the mass assembly and galaxy formation around the most massive black hole at early Universe,” said Professor Xiaohui Fan from Steward Observatory, the University of Arizona, in a statement.

“This quasar is unique. We are so excited, when we found that there is such luminous and massive quasar only 0.9 billion years after the Big Bang. Just like the brightest lighthouse in the distant universe, its glowing light will help us to probe more about the early universe,” Professor Xue-Bing Wu at Peking University, who led the team, also stated.

The research team will carry out further investigations on the quasar with the Hubble Space Telescope and the Chandra X-ray Telescope.

Related Links:

More on quasars

More from Universe

Quasars give astronomers best fix yet on expansion of the Universe

Original story from Sen. © 2015 Sen TV Limited. All rights reserved. This material may not be published, broadcast, rewritten or redistributed. For more space news visit Sen.com and follow @sen on Twitter.

About these ads
Sponsored Content by LockerDome
 
 
Make a Difference
Inspired? Here are some ways to make a difference on this issue.
FREE Newsletters
Get the Monitor stories you care about delivered to your inbox.
 

We want to hear, did we miss an angle we should have covered? Should we come back to this topic? Or just give us a rating for this story. We want to hear from you.

Loading...

Loading...

Loading...

Save for later

Save
Cancel

Saved ( of items)

This item has been saved to read later from any device.
Access saved items through your user name at the top of the page.

View Saved Items

OK

Failed to save

You reached the limit of 20 saved items.
Please visit following link to manage you saved items.

View Saved Items

OK

Failed to save

You have already saved this item.

View Saved Items

OK