Skip to: Content
Skip to: Site Navigation
Skip to: Search


Why scientists are baffled by a half-million-year-old human thigh bone (+video)

Scientists sequenced 400,000-year-old mitochondrial DNA, exploding the previous record for oldest DNA and introducing new questions into European and Asian history.

(Page 2 of 2)



Dr. Meyer and his team at the Planck Institute have developed new techniques for retrieving and sequencing highly degraded ancient DNA, which they first tested on a cave bear bone found at the Sima de los Huesos site. After that success, they gathered a few grains of bone powder from a hominin thigh bone from the cave. They extracted its DNA and sequenced the mitochondrial genome (mtDNA), a small part of the genome that is passed down along the maternal line and occurs in many copies per cell. The researchers then compared this ancient mtDNA with Neanderthals, Denisovans, present-day humans, and apes.

Skip to next paragraph

From gaps in the DNA sequences, they calculated that this hominin lived between 125,000 and 640,000 years ago, most likely around 400,000 years ago. After considering the bone's age and Neanderthal-like features, the researchers concluded that the Sima hominins were probably descended from the same group that gave rise to both Neandertals and Denisovans. An alternate theory could be that a small group migrated from Siberia to Spain, bringing the Denisova-like mtDNA into the Sima hominins or their ancestors.

And yet, since the entire Denisovan classification is based on the DNA of one finger bone, which was sequenced last fall, it is possible that these are simply variations within one species, not multiple species. "The discovery of a small finger bone from the Denisovans was pure chance," said Meyer in an interview in August 2012. "It shows absolutely no external difference from the finger of a modern human or Neanderthal."

But the Planck team points to the genetic markers they identified. "The quality of the data is as good as if you were to have your own genome analysed today," said Meyer. "We can even differentiate between the maternal and paternal chromosomes. A comparison of both sets of chromosomes, or genomes, shows us that the parents of our Denisovan were genetically very similar – although they were not related to one another. We can conclude from this that there cannot have been very many of these people."

Modern humans "did not descend from either the Denisovans or the Neanderthals," he added. "The ancestor of the Denisovans and Neanderthals ... developed separately from modern humans and begot both of these humanoids – thus, they are siblings of a sort."

Neanderthals are more closely related to modern humans than to Denisovans, says Meyer, and Denisovans are more closely related to this new Sima genotype than either of them are to Neanderthals or humans. Their branch of the Hominidae family tree split off from ours at least 700,000 years ago, he says.

“We can now study DNA from human ancestors that are hundreds of thousands of years old," says Svante Pääbo, director of the Planck Institute and a coauthor on the paper. "It is tremendously exciting.”

Their next step: retrieve DNA from more individuals from Sima de los Huesos.

Permissions

  • Weekly review of global news and ideas
  • Balanced, insightful and trustworthy
  • Subscribe in print or digital

Special Offer

 

Editors' picks

Doing Good

 

What happens when ordinary people decide to pay it forward? Extraordinary change...

Danny Bent poses at the starting line of the Boston Marathon in Hopkinton, Mass.

After the Boston Marathon bombings, Danny Bent took on a cross-country challenge

The athlete-adventurer co-founded a relay run called One Run for Boston that started in Los Angeles and ended at the marathon finish line to raise funds for victims.

 
 
Become a fan! Follow us! Google+ YouTube See our feeds!