Skip to: Content
Skip to: Site Navigation
Skip to: Search

How hawkmoths jam the sonar signals from bats

Hawkmoths are now the second known species of moths that have found a way to jam bat sonar. Moths have evolved other defense mechanisms to detect and avoid bats.

(Page 2 of 2)

"Normally, a bat attack starts with relatively intermittent sounds. They then increase in frequency—up to 200 cries per second—as the bat gets closer to the moth "so it knows where the moth is at that critical moment," Corcoran explains. But his research showed that just as bats were increasing their click frequency, moths "turn on sound production full blast," clicking at a rate of up to 4,500 times a second. This furious clicking by the moths reversed the bats' pattern—the frequency of bat sonar decreased, rather than increased, as it approached its prey, suggesting that it lost its target."

Skip to next paragraph

But sonar jamming is not the only weapon in the moth's self-defense system. Researchers have known for 50 years that moths have an early warning system: They can hear the ultrasonic hunting calls of their nocturnal predator.

In a 2006 paper in Current Biology, Dr. James Windmill who was at the University of Bristol, England, at the time, wrote that not only was the simply designed moth ear detecting the echolocation pulses of the bat, but it was actually fine tuning its receptivity when under attack.

He noted that the hearing of Noctuid moths is most sensitive to frequencies at 20–40 kH, which put it at the lower range of the ultrasound frequencies used by bats. And as bats move in closer, both the loudness and the frequency of the bat's sonar calls increase. And the moth responded.

"The moth's ear mechanically tunes up and anticipates the high frequencies used by hunting bats," wrote Dr. Windmill.

Check out a rather cool video depicting what an underwing moth does once he hears that there's a bat in hot pursuit.

An acoustical engineer now at the University of Strathclyde in Scotland, Windmill has continued to study moths. His latest research, published in May in Biology Letters, reports that greater wax moths can hear higher frequencies than any other animal on earth, up to 300 kilohertz. 

The highest known frequency of bat echolocation calls is 212 kHz, but some scientists have suggested that bats are evolving higher frequencies or switching frequencies in order to confuse moths.

“A lot of previous work has suggested that some bats have evolved calls that are out of the hearing range of the moths they are hunting. But this moth can hear the calls of any bat,” Windmill told Nature.

And so the epic evolutionary war goes on outside the audible range of some very interested human spectators.


  • Weekly review of global news and ideas
  • Balanced, insightful and trustworthy
  • Subscribe in print or digital

Special Offer


Editors' picks

Doing Good


What happens when ordinary people decide to pay it forward? Extraordinary change...

Danny Bent poses at the starting line of the Boston Marathon in Hopkinton, Mass.

After the Boston Marathon bombings, Danny Bent took on a cross-country challenge

The athlete-adventurer co-founded a relay run called One Run for Boston that started in Los Angeles and ended at the marathon finish line to raise funds for victims.

Become a fan! Follow us! Google+ YouTube See our feeds!