Skip to: Content
Skip to: Site Navigation
Skip to: Search

Surprise: Martian sand dunes are speedy

Rare winds jump-start sand movement on Mars, according to scientists.

By Nola Taylor / May 9, 2012

Sand dunes on Nili Patera, just north of the equator, are moving at a steady clip.

NASA/JPL/University of Arizona


Towering sand dunes on Mars, once thought to be ancient and unchanging, are actually dynamic and active today, new satellite observations show.

Skip to next paragraph

Using advanced optical images taken by the High Resolution Imaging Science Experiment (HiRISE) on NASA's Mars Reconnaissance Orbiter, scientists tracked the horizontal and vertical motion of sand over time with unprecedented detail.

"We can actually see movement, potentially, of just a few centimeters," planetary geologist Nathan Bridges of Johns Hopkins University told

Sand in motion

Bridges and his team studied the Nili Patera dune field just north of the Martian equator, taking detailed, high-resolution images over 105 days.

Using a computer program previously used to examine earthquakes and landslides on Earth, the scientists measured movements of the dunes, finding that some of the surface ripples traveled as much as 15 feet (4.5 meters) over the course of the study.  Fast dunes may travel a distance equal to their length over 170 years, while slower dunes take a few thousand years to move. [Video: Sand Dunes Crawl Across Mars' Surface]

Interestingly, the dunes in the Nili Patera move similarly to those in Victoria Valley, Antarctica, on Earth.

Bridges previously worked on a 2010 study that first identified Martian dune motion in the Nili Patera region. So when he wanted a more detailed look at sand dunes, the region seemed like a good place to start.

"We thought, let's test this technology on an area where we know the motion is occurring," Bridges said.

Located on a volcanic feature inside the Syrtis Major region, Nili Patera is a crater with an opening at one end that allows dunes to blow inside of it. However, this area of Mars isn't likely to be unique.

"There's no reason to think that we would not see this in some other areas of Mars, as well," Bridges said.

The researchers intend to examine the dune and ripple motion on other areas of Mars, including regions where the motion may not be obvious without their technique.

Read Comments

View reader comments | Comment on this story

  • Weekly review of global news and ideas
  • Balanced, insightful and trustworthy
  • Subscribe in print or digital

Special Offer


Doing Good


What happens when ordinary people decide to pay it forward? Extraordinary change...

Danny Bent poses at the starting line of the Boston Marathon in Hopkinton, Mass.

After the Boston Marathon bombings, Danny Bent took on a cross-country challenge

The athlete-adventurer co-founded a relay run called One Run for Boston that started in Los Angeles and ended at the marathon finish line to raise funds for victims.

Become a fan! Follow us! Google+ YouTube See our feeds!