Skip to: Content
Skip to: Site Navigation
Skip to: Search


Runaway planets ejected from galaxy at insane speeds

New evidence suggests that planets are being tossed out of the Milky Way at speeds comparable to the speed of light.

(Page 2 of 2)



"Other than subatomic particles, I don't know of anything leaving our galaxy as fast as these runaway planets," lead author Idan Ginsburg of Dartmouth College in Hanover, N.H., said in a statement.

Skip to next paragraph

A typical runaway planet would likely dash outward at 7 to 10 million mph (11.3 to 16.1 million kph), but given the right circumstances, a small fraction could have their speeds boosted to up to 30 million mph (48.3 million kph).

"It's like a pinball machine," Loeb said. "Things are kicking around, and if things happen to move in just the right way, a planet could get kicked out at a much higher speed than other planets."

Eventually, these hypervelocity planets will escape the Milky Way and travel through interstellar space on a wild ride, he added.

"If there is a civilization on such a planet, they would have a very exciting journey," Loeb said. "It would start at the center of the densest environment of the galaxy, and the planet would traverse through the galaxy, seeing it from different directions before eventually exiting from the Milky Way. Once the planet exits from the local group of galaxies, it will be accelerated away by cosmic expansion. So, within 10 billion years, it would go from the center of the galaxy to all the way to the edge of the observable universe."

Runaway stars as planetary hosts?

The researchers are now hoping other astronomers will use these findings to look for potential signs of these planets around hypervelocity stars. A planet that tightly orbits a runaway star will cross in front and cause its brightness to dim slightly in what astronomers call a "transit."

"Simply because it moves around the star, it may pass in front and then block some of the light emitted from the surface of the star," Loeb explained. "By monitoring the brightness of the star, we might see evidence of dimming."

To hitch a ride on a hypervelocity star, a planet would have to be locked in a tight orbit, which ups the odds of witnessing a transit to around 50 percent, the researchers said.

"With one-in-two odds of seeing a transit, if a hypervelocity star had a planet, it makes a lot of sense to watch for them," Ginsburg said in a statement.

In fact, some existing large telescopes could have instruments sensitive enough to detect this slight dimming.

"This is the first time someone is talking about searching for planets around hypervelocity stars," Loeb said. "It's possible with large telescopes, but observers need to put it on the agenda. The purpose of the paper was to propose this."

The detailed results of the study will be published in an upcoming issue of the journal Monthly Notices of the Royal Astronomical Society.

Read Comments

View reader comments | Comment on this story

  • Weekly review of global news and ideas
  • Balanced, insightful and trustworthy
  • Subscribe in print or digital

Special Offer

 

Doing Good

 

What happens when ordinary people decide to pay it forward? Extraordinary change...

Danny Bent poses at the starting line of the Boston Marathon in Hopkinton, Mass.

After the Boston Marathon bombings, Danny Bent took on a cross-country challenge

The athlete-adventurer co-founded a relay run called One Run for Boston that started in Los Angeles and ended at the marathon finish line to raise funds for victims.

 
 
Become a fan! Follow us! Google+ YouTube See our feeds!