Skip to: Content
Skip to: Site Navigation
Skip to: Search

Planet found at perfect spot for life - in solar system with three suns

Scientists have found a planet about 4.5 times the mass of Earth that orbits in the heart of its star's habitable zone, with two other suns orbiting much farther away. Is there water or the potential for life? Perhaps. But the planet could also be a two-faced world of scorching sun and perpetual ice.   

By Staff writer / February 2, 2012

An artist's conception of the alien planet GJ 667Cc, which is located in the habitable zone of its parent star.

Carnegie Institution for Science


A newfound planet only 22 light-years away represents the best candidate yet for hosting liquid water on its surface, according to a team of astronomers announcing the find Thursday.

Skip to next paragraph

The planet has 4.5 times Earth's mass and orbits in the heart of its star's habitable zone – the region where water could remain stable on an orbiting planet's surface. Liquid water is a necessary ingredient for organic life.

For now, however, too little is known about the planet's composition and the makeup of any atmosphere – if it has one – to say with confidence that water is likely to be there, researchers say. Location alone does not make for a habitable planet. Some scientists suggest that the newfound planet could be caught with one hemisphere permanently facing its star, lessening any prospects for life.

Still, the researchers note the planet's position well within the habitable zone is an encouraging first sign.

This is not the first so-called super Earth astronomers have detected in a star's habitable zone. In December, scientists with NASA's Kepler mission announced the discovery of a super Earth orbiting within its host star's habitable zone. That planet was orbiting a sun-like star, marking an important step along the path toward meeting the mission's goal of uncovering Earth-size planets orbiting within the habitable zone of sun-like stars.

But the new planet, GJ 667Cc, orbits a red dwarf – a type of star that is much smaller, fainter, and far more common in the galaxy than sun-like stars. Given red dwarfs' prevalence, the finding suggests that the galaxy should be brimming with super Earths in habitable zones, the research team says.

The new planet's host star, GJ 667C, has about 30 percent of the sun's mass and gives off most of its radiation as infrared light. It's part of a triple-star system that also contains a pair of orange-dwarf stars. These don't come closer to GJ 667C than about 230 astronomical units, or 230 times the distance between Earth and the sun. They would be distant specks in the sky to a spacecraft orbiting the new planet.

Because the star is substantially fainter than the sun, its habitable zone is closer. GJ 677Cc orbits its red dwarf at about 0.12 astronomical units, zipping around the star once every 27.15 days.

Astrobiologists suggest red dwarfs have an important thing going for them as energy sources for life on any planets orbiting them: longevity.

Red dwarfs are dim because they are not burning their hydrogen fuel as furiously as more-massive stars. And unlike more massive stars, they have access to all of their hydrogen fuel. So they last longer than sun-like stars.

The sun boasts a respectable 10-billion year life span. For a star like GJ 677C, a life span is measured in trillions of years – plenty of time for life to emerge and evolve many times over if conditions permit. The team estimates that GJ 667C is only about 5 billion years old.

Half baked, half frozen world?

Yet others caution that the laws of physics may conspire against the presence of liquid water on planets in an orbit like GJ 667Cc's.

The planet may be close enough to the star that, if the planet's orbit is circular, the gravitational interaction between the two objects eventually will force the planet slow its rotation until it presents the same hemisphere to the star all the time, says University of Maine astronomer Neil Comins.

Astronomers call this synchronous rotation: The planet's rotation rate matches the time it takes the planet to orbits its star. One hemisphere of the planet is permanently roasting, the other is frozen.

Even with an atmosphere that circulates between the day side and night side, it's unclear if enough warmth will make it to the night side to keep water vapor transported there from freezing out as snow, rarely if ever to return to the day side. In effect, the night side could rob the day side of any water.


Read Comments

View reader comments | Comment on this story

  • Weekly review of global news and ideas
  • Balanced, insightful and trustworthy
  • Subscribe in print or digital

Special Offer


Editors' picks

Doing Good


What happens when ordinary people decide to pay it forward? Extraordinary change...

Danny Bent poses at the starting line of the Boston Marathon in Hopkinton, Mass.

After the Boston Marathon bombings, Danny Bent took on a cross-country challenge

The athlete-adventurer co-founded a relay run called One Run for Boston that started in Los Angeles and ended at the marathon finish line to raise funds for victims.

Become a fan! Follow us! Google+ YouTube See our feeds!