Skip to: Content
Skip to: Site Navigation
Skip to: Search

Are sunspots prime suspects in global warming?

Climate-change 'optimists' say complex natural cycles may be at the heart of global warming.

(Page 2 of 2)

In 1970, Russian researchers using high-altitude balloons to measure sunlight reported a 2 percent rise in the sun's output as the sun moved from periods of little sunspot activity to peak activity. Today, using better measurements from satellites over the past 28 years, the change in total solar irradiance is estimated to be much smaller, between 0.05 percent and 0.07 percent. The most important component for climate-change purposes – visible light – represents about half of this change, says Tom Woods, a researcher at the University of Colorado's Laboratory for Space and Atmospheric Physics, based in Boulder.

Skip to next paragraph

'Pesky' correlations with sunspots

Last fall, solar physicists and climate scientists in the US and Europe reviewed the latest studies of changes in total solar irradiance driven by the 11-year sunspot cycle. They concluded that those changes are unlikely to have had a "significant influence" on global warming since the 1600s. In particular, satellite measurements since the late 1970s showed changes too weak to have "contributed appreciably to accelerated warming over the past 30 years."

The effect "is really small, unless you can come up with ways to amplify it," says Tom Wigley, a senior scientist at the National Center for Atmospheric Research in Boulder, who took part in the study.

Other studies suggest that changes in sunlight – as well as the cooling effect of volcanic activity, which sends sunlight-reflecting particles high in the sky – probably played a major role in climate during preindustrial times and even into the early 20th century. But even these find that CO2 emissions have dominated the scene over the past half century.

Some pesky correlations – such as the one between sunspot cycles and cloud cover – linger. This has led some scientists to ask if some process in the atmosphere may be boosting those tiny changes.

One candidate is UV light. During swings in sunspot cycles, the largest fractional changes in the sun's output occur in the ultraviolet range, Shindell notes. But much of that is absorbed by ozone in the stratosphere – which may be the connection, he suggests. The rise and fall of UV light can alter the amount of heat-trapping ozone in the stratosphere, changing its circulation patterns. These changes can work their way into the layer below, the troposphere, where weather and people meet. Instead of warming the troposphere, changes in solar UV output appear to redistribute warmth, chill, rainfall, and other conditions already present.

This mechanism may account for plunging winter temperatures in the Little Ice Age (1450 to 1850) – at least over land in the Northern Hemisphere, he says.

Another possibility: cosmic rays

But if changes in ultraviolet light tied to sunspot cycles merely stir the climate pot, might something else affect long-term global average temperatures?

Enter galactic cosmic rays. In 1997, Danish researcher Henrik Svensmark and a colleague at the Danish Meteorological Institute injected new life into this debate with the first in a set of papers that suggested a strong correlation between an increase in galactic cosmic rays reaching Earth's surface during low points in the sunspot cycle and increased cloud cover.

The idea of a big effect on climate from cosmic rays is controversial. For instance, the team that studied sunspots and cloud cover over North America found that average cloudiness rose and fell with the sunspot cycle, but didn't track with cosmic ray trends.

Still, a study published last year in Britain showed a small but statistically significant ef­­fect from cosmic rays, notes Rasmus Ben­­estad, who specialized in solar-climate interactions at the Norwegian Meteorological Institute in Oslo. He is highly skeptical that cosmic rays play a big role in climate, he says. But, he adds, the phenomenon is worth exploring.

Dr. Kirkby and colleagues at several institutions aim to do just that. They've designed an aerosol chamber to test how cosmic rays might affect cloud formation and how significant the effect might be. "You really can't settle the issue by more heated debate," he says. "You need experimental data."


We'd like to hear from you. Do you think climate-change skeptics are raising persuasive points or ignoring strong scientific evidence? Write to: