Skip to: Content
Skip to: Site Navigation
Skip to: Search

Simpler - and safer

In its comeback bid, US nuclear industry eyes a new generation of reactors. Will they ease Americans' worries?

By Peter N. SpottsStaff writer of The Christian Science Monitor / June 2, 2005

It's a simple proposition: Make electricity by boiling water and letting the steam drive turbines to crank the generators. But when the heat needed to boil water comes from splitting atoms, the technology is anything but simple.

Skip to next paragraph

Now, in its bid to make a comeback in the United States a generation after the Three Mile Island accident, the nuclear-power industry is addressing two of its major bugaboos - safety and cost - through technology. Its answer: a new generation of reactors that are simpler to operate and maintain than today's models.

The move is already under way.

Over the past two months, one major US utility and a separate consortium of utilities have signed agreements with the US Department of Energy (DOE) to split the cost of testing a streamlined federal program for licensing the construction and operation of new nuclear plants. The goal is to begin installing these new reactors by 2010.

Over the longer term, 11 nations including the US are working on so-called fourth-generation reactor designs that proponents say have the potential to be safer, cheaper, and more reliable than older models. At one end of the size scale, some alternative designs aim to produce electricity for major utilities along with the hydrogen needed for President Bush's "hydrogen economy." At the other end of the scale, some designs are being tailored to power and heat small rural communities. Last December, for example, the tiny Alaskan town of Galena accepted an offer from Toshiba to build and install a small reactor some have dubbed a nuclear "battery." It would supply the town with electricity and heat. The town now is in the early stages of seeking approval from the US Nuclear Regulatory Commission to install the reactor.

The twin drivers behind these efforts are projections of increasing demand for electricity and rising concerns about greenhouse gases - something that nuclear power doesn't produce.

In the US alone, utilities will need to build 281 gigawatts of new generating capacity by 2025 as demand rises and older coal- and oil-fired plants are closed, the DOE estimates.

Climate scientists trace warming temperatures largely to greenhouse gases added to the atmosphere from burning fossil fuels such as coal, oil, or natural gas. The nuclear industry has long argued that nuclear energy must remain an option to reduce those emissions. But it's been a tough sell. Accidents at Three Mile Island in Pennsylvania in 1979 and Chernobyl in the Ukraine in 1986 still echo in public discussions. These memories are kept fresh by many environmental groups who see nuclear energy as too dangerous and too expensive. They push instead for greater energy efficiency and increased reliance on renewable energy sources.

Yet faced with global warming, some groups, such as the Pew Center on Global Climate Change and Environmental Defense, appear willing to give nuclear energy a reluctant second look.

Support for new reactors also appears in a bill introduced last Thursday in Congress. Sens. Joseph Lieberman (D) of Connecticut and John McCain (R) of Arizona offered the Climate Stewardship and Innovation Act of 2005. It would require the Environmental Protection Agency to set limits on emissions of greenhouse gases and set targets for achieving them. The duo has introduced similar bills in the past. But the latest measure outlines a mechanism to fund the development of new technologies to help achieve those targets. Among those technologies: three unspecified new nuclear-reactor designs.

"Nuclear has a lot of problems, and only if it can solve its problems should it be part of the mix," says Judith Greenwald, director of innovative solutions for the Pew Center. The list she cites includes cost, public concerns over safety, nuclear-waste disposal, and nuclear proliferation.