Skip to: Content
Skip to: Site Navigation
Skip to: Search

Lure of the rings

As the Cassini orbiter enters Saturn's 'city limits,' scientists hope to uncover secrets of the planet and its moon Titan.

By Peter N. SpottsStaff writer of The Christian Science Monitor / May 13, 2004

It's an expedition Galileo Galilei might have given his beard to join. Nearly 500 years after the Renaissance genius first trained his crude telescope on Saturn, some 300 scientists from 17 countries are set to explore the planet, its spectacular ring system, and its moons with a $3.4 billion orbiter named Cassini and its Huygens probe.

Skip to next paragraph

Next Tuesday, Cassini enters Saturn's "city limits" - the gravitational boundary where the ringed planet tugs at the craft with more strength than the sun. The transition marks the final leg of Cassini's seven-year, 3.45 billion-kilometer trip.

On July 1, the craft begins orbiting Saturn. Six months later it is slated to release Huygens. The probe will parachute to the surface of the moon Titan to give scientists an unprecedented look at a body whose atmosphere resembles a young Earth's and whose surface is thought to be oozing with organic compounds held to be among the chemical building blocks of life.

As the most sophisticated, scientifically ambitious civilian space probe ever launched, Cassini "will allow us to study this magnificent system in excruciating detail," says Carolyn Porco, who heads the mission's imaging team. What's more, it may have a universal story to tell.

The Saturnian system resembles a solar-system wannabe frozen in a state of arrested development, she says. Like Jupiter, Saturn is a giant ball of gas that never gained enough mass to heat its interior to the point of igniting. Saturn's rings - chunks of ice and rock - may be relics of the early disk of dust and gas that surrounded the solar system's young sun some 4.6 billion years ago. They also resemble the protoplanetary disks seen around other stars. And Saturn's inner moons are plowing gaps in the rings, similar to the gaps seen in the dusty, gaseous disks detected around other stars. From such gaps astronomers have inferred the presence of planets around these stars.

Thus, an intimate study of processes at Saturn could help researchers interpret what they see in fledgling solar systems around nearby stars.

"As a planetary system, Saturn holds the greatest promise for answering questions that have a far broader scientific reach than Saturn itself," Dr. Porco says.

Since February, Cassini's cameras have been trained on the planet to provide colleagues and the public with visual appetizers. A team led by John Clarke at Boston University has been using the Hubble Space Telescope in tandem with Cassini's instruments to tease out details of the planet's "space weather" - the interaction of its magnetic fields with charged particles coming from the sun, known as solar wind. The results of their work are slated to be published this summer.

Yet the mission is so complex that team members have been spending the lion's share of their time refining the craft's observing program and the software to execute it. This has left little time to do more than cast an appreciative glance at the images coming in. Deep study comes later.

Cassini's 'crown jewel'

Astronomers also have been intensifying their focus on Saturn's moon Titan, which Goddard Space Flight Institute astrophysicist Michael Flasar dubs "the jewel in Cassini's crown." Earlier this month, Cassini beamed back its first images of Titan. They show a surface that appears to vary greatly.

During Cassini's baseline mission of orbiting Saturn, set to last four years, Titan is drawing more fly-bys than any other object save Saturn itself. First discovered by Dutch astronomer Christiaan Huygens in 1655, Titan is the only moon in the solar system with an atmosphere. And it's slightly larger than Mercury, which probably would earn it the title of planet if it were orbiting the sun on its own.

Over the years, research has suggested that "on Titan, you have kind of a deranged version of Earth," says Caitlin Griffith, an astronomer at the University of Arizona's Lunar and Planetary Laboratory in Tucson. It boasts a nitrogen-based atmosphere, as Earth does. The atmosphere's surface pressure is thought to be similar to Earth's. But where the balance of Earth's atmosphere is mostly oxygen, Titan hosts organic compounds, such as methane. It appears that methane, a heat-trapping "greenhouse gas," may be hoarding what faint heat Titan receives from the sun to help drive weather patterns.