What's fueling the rise of coccolithophores in the oceans?

Rising carbon dioxide in the ocean is causing a spike in population of microscopic marine alga, says a new study.  

Karl Bruun/Nostoca Algae Laborator/Nikon Small World/AP/File
This undated handout image provided by Karl Bruun, Nostoca Algae Laboratory, photo courtesy of Nikon Small World, shows a number of marine diatom cells (Rhizosolenia setigera), which are an important group of phytoplankton in the oceans. Much of life on Earth depends on tiny plant plankton. They are the foundation of the bountiful ocean food web, make half the world's oxygen and suck up harmful carbon dioxide. A new study published Monday in the journal Nature Climate Change demonstrates that ocean acidification could dramatically impact the world's plankton.

Phytoplankton, micro-organisms that float, as opposed to swim, are rapidly thriving in the North Atlantic, suggesting an environmental shift that defies previous scientific predictions.

Scientists have long thought that the number of plankton species would decline due to increased acidity in the oceans. However, over the last four decades or so they have grown to be much more in abundance, a new study indicates.

The study, led researchers from Johns Hopkins University, shows a ten-fold increase in the number of coccolithophores, single-celled algae with a limestone shell, that are found throughout the planet's oceans between 1965 and 2010, and a particularly sharp spike since the late 1990s.

"Something strange is happening here, and it's happening much more quickly than we thought it should," Anand Gnanadesikan, associate professor in the Morton K. Blaustein Department of Earth and Planetary Sciences at Johns Hopkins, and also one of the study's five authors said, in a news release.  

During their study, the team, analyzed Continuous Plankton Recorder survey data from the North Atlantic Ocean and North Sea since the mid-1960s. This revealed that higher carbon dioxide levels in our planet’s oceans may be causing an increase in the population of coccolithophores.

"Our statistical analyses on field data from the CPR point to carbon dioxide as the best predictor of the increase in coccolithophores,” Sara Rivero-Calle, a Johns Hopkins doctoral student and lead author of the study said. "The consequences of releasing tons of CO2 over the years are already here and this is just the tip of the iceberg."

According to William M. Balch of the Bigelow Laboratory for Ocean Sciences in Maine, a co-author of the study, scientisits have long expected that increasing ocean acidification acidity due to higher carbon dioxide would suppress these chalk-shelled organisms. The new study shows, it didn't.

"Coccolithophores have been typically more abundant during Earth's warm interglacial and high CO2 periods," said Balch. "The results presented here are consistent with this and may portend, like the 'canary in the coal mine,' where we are headed climatologically."

A study last summer projected that the balance of various plankton species will radically change as the world’s oceans increase in acidity over the next 85 years. The Christian Science Monitor reported, “By 2100, ocean acidification will have grown to such an extent that some species of phytoplankton ‘will die out, while others will flourish’”.

According to the researchers of the latest study, the report sheds light on the effects of increasing carbon to marine life.

"These clearly represent major shifts in ecosystem type," Gnanadesikan said. "But unless we understand what drives coccolithophore abundance, we can't understand what is driving such shifts. Is it carbon dioxide?"

Gnanadesikan notes that while the report is certainly is good news for creatures that eat coccolithophores, it is not clear whether the rapid growth in the tiny plankton's population is harmful or beneficial to the planet.

"What is worrisome," he said, "is that our result points out how little we know about how complex ecosystems function." 

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to What's fueling the rise of coccolithophores in the oceans?
Read this article in
QR Code to Subscription page
Start your subscription today