IBM scientists create magnetic atom that could store information

Atomic-scale storage of information on computers has long been considered a holy grail for computer technology.

In traditional computers, the smallest units of information exists in one of two states: 1 and 0, or on and off. Long strings of 1s and 0s can store increasingly complex information that can be used use to perform useful tasks, but that information storage is limited by the size of those individual bits of information in a computer's hard drive.

But now, researchers have figured out a way to magnetically store information on the smallest unit possible: a single atom.

There's a long way to go before atom-sized information storage technology can make it to your home computer or smartphone, but now researchers have proven that it is possible to store information on an incredibly small level. Theoretically, this new technology could lead to massive data storage capacities on an impressive scale – even in the smallest of devices.

"Magnetic bits lie at the heart of hard-disk drives, tape and next-generation magnetic memory," said Christopher Lutz, lead nanoscience researcher at IBM Research – Almaden in San Jose, California, in an IBM statement. "We conducted this research to understand what happens when you shrink technology down to the most fundamental extreme — the atomic scale."

On most computers, single bits of information are already stored in very small areas, about 100,000 atoms for every 1 or 0. While this scale might been considered science fiction even a couple of decades ago, the scale at which computers store information has been steadily decreasing for years. Theoretically, as long as there is a smaller stable, physical unit upon which information can be stored, computers can become faster and be able to store more information while taking up less space.

Scientists have long thought that the atom is the smallest unit upon which this traditional computing is possible without having to resort to quantum computing or other theoretical computational methods. But despite knowing about this limit, atom-scale information storage had never been successfully attempted until now.

"It's a landmark achievement," says Sander Otte, a physicist at Delft University of Technology in the Netherlands who was not involved in the study, said in a statement. "Finally, magnetic stability has been demonstrated undeniably in a single atom."

The researchers described their methods in a study released in the journal Nature. Using individual atoms of the rare Earth element holmium, they were able to flip the atoms up and down using their magnetic poles by sending electrical currents through the particles, holding them in place at an extremely low temperature assisted by liquid helium. The researchers could then "read" the magnetic field using a single iron atom and an electron microscope to determine whether the north or the south pole of each atom was facing upward. By interpreting one pole facing up as 1 and the other as 0, researchers proved that encoding binary data at this level was possible.

Of course, the radically low temperatures and specialized equipment involved in both encoding and reading this data means that it will be a long time, if ever, that consumer products will be able to read atom-sized bits of information. But one day, atom-sized storage could theoretically store the equivalent of iTunes' entire library – 35 million songs – on a device the size of a credit card, according to IBM.

"This work is not product development, but rather it is basic research intended to develop tools and understanding of what happens as we miniaturize devices down toward the ultimate limit of individual atom," Dr. Lutz told CNet. "We are starting at individual atoms, and building up from there to invent new information technologies."

You've read  of  free articles. Subscribe to continue.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to IBM scientists create magnetic atom that could store information
Read this article in
https://www.csmonitor.com/Science/2017/0312/IBM-scientists-create-magnetic-atom-that-could-store-information
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe