A kitten given to WikiLeaks founder Julian Assange by his children is seen at the Ecuadorian Embassy in central London, Britain, in this undated photograph released to Reuters on May 9, 2016.

Schrödinger’s cat now has a playmate

The decades-old paradox of Schrödinger’s cat, in which the feline is both dead and alive at the same time, has taken a giant leap forward. The cat now exists in two boxes, simultaneously. And it's still dead and alive.

Schrödinger’s cat is something many of us have heard of, but perhaps fewer actually understand.

The idea was first dreamed up by an Austrian physicist, Erwin Schrödinger, who wanted to illustrate the mind-bending nature of quantum mechanics. He created a thought experiment in this world to illustrate the point, which would allow a cat to be both dead and alive in a box at the same time.

Now, scientists have added another box. And another cat. And the first cat being dead and alive simultaneously in the first box, so this causes the second cat in the second box to also be dead and alive at the same time. Makes perfect quantum sense, right?

"It's understandable that people don't understand it," lead author Chen Wang of Yale University told The Washington Post. "You can't understand it using common sense. We can't either."

But here’s the premise: A cat sits in a box. Alongside the cat, there’s poison. That poison will only be released upon the decay of a radioactive subatomic particle.

According to quantum mechanics, and specifically the theory of “superposition,” these particles actually exist in all possible states at the same time - until, that is, someone takes a measurement. At that point, the particle falls into a single, known state.

So, the particles could be decaying, and not decaying, simultaneously. As a consequence, the poison is being released - and not released. And so the cat is both dead and alive.

Until someone opens the box, of course, and is observed. Then, the cat can't be doing both things at once.

What Dr. Wang and his team have done is to add another dimension: the concept of “entanglement.” This proposes that two objects can be intimately linked, even if billions of light-years separate them, and any change that happens to one will happen to the other instantaneously, a relationship Einstein once described as “spooky action at a distance.”

For our cat, this means, quite simply, that there’s a twin, in another box. And everything that happens to one, happens to the other.

In Wang’s experiment, there were no cats, just light. He used two aluminum cavities, each with a wave of light bouncing around inside. The researchers induced such a state so that the light existed in two different wavelengths at the same time, in both boxes.

And here we come to the key part, in terms of application: The researchers were able to take measurements without disrupting the photons, thereby retaining the dual state.

This matters because quantum mechanics holds great promise in the realm of computing. In traditional computers, the basic unit is a “bit”, which encodes either a one or a zero. But quantum bits, or “qubits”, have the ability to encode for both at the same time, allowing for vast numbers of calculations to be processed simultaneously.

The superposition of particles involved in quantum computing is, however, inherently fragile, and any disturbance to that state will mean that the data it encodes is also lost or corrupted.

"It's well understood that 99 percent of computation or more will be done to correct for errors, rather than computation itself," Wang told Live Science.

This most recent expansion of Schrödinger’s cat paradox, published Friday in Science, holds the promise of making these computational systems far more robust.

You've read  of  free articles. Subscribe to continue.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to

QR Code to Schrödinger’s cat now has a playmate
Read this article in
QR Code to Subscription page
Start your subscription today