Quantum dots finally take a giant leap forward

Quantum dots, a technology brimming with promise but held back by hurdles in the research, have taken another bound forward in their efforts to break free and revolutionize the electronic landscape.

Gregory Bull/AP/File
Attendees look at a display of Samsung SUHD Quantum dot display TVs at the Samsung booth during CES International, Friday, Jan. 8, 2016, in Las Vegas.

Quantum dot technology has taken another leap forward, as researchers have discovered a way to make near-perfect superstructures out of these infinitesimal crystals.

Scientists have long harbored high hopes for these tiny crystalline structures that can precisely convert and tune incoming light, but an apparently insurmountable hurdle has been the inability to fuse them together directly. Until now.

This latest research, published Monday in the journal Nature Materials, has obliterated that obstacle, arranging quantum dots together in an order almost without blemish.

“Previously, they were just thrown together, and you hoped for the best,” says lead researcher Tobias Hanrath, of Cornell University’s School of Chemical and Biomolecular Engineering, in a telephone interview with The Christian Science Monitor.

“It was like throwing a couple thousand batteries into a bathtub and hoping you get charge flowing from one end to the other.”

Each crystal – each quantum dot – consists of about 5,000 atoms. Because of the distinct properties these crystals exhibit, not least their emission or absorption of different wavelengths of light according to how they are manipulated, they offer much promise in various fields of technology.

But the challenge has always been finding a way to connect the dots with one another, and to their surroundings, directly, without introducing another substance that would impact both purity and structure.

The breakthrough achieved by Dr. Hanrath and his team represents the culmination of several years’ work, which the professor likens to “playing lego but with atomic-sized building blocks.”

“If you take several quantum dots, all perfectly the same size, and you throw them together, they’ll automatically align into a bigger crystal,” Hanrath tells the Monitor. “It’s the same idea as a bucket of tennis balls automatically assuming an ordered pattern, or stacking cannonballs on top of each other.”

The difference here is that Hanrath’s team has enabled those quantum dots not just to arrange themselves in a random, if ordered, manner, but the crystals can now actually stick to one another.

Previous work had shown that if you placed the quantum dots on a fluid surface, similar to placing oil on water, the crystals could be fused together. But this latest work sought to take that to a new level of perfection.

They have, essentially, created crystal superstructures that are defect-free.

“Take silicon,” says Hanrath. “Every silicon atom is the same size. In our case, the building blocks are almost the same size, but there is 5 percent variability in diameter, so you can’t make a perfect crystal superstructure, but as far as you can, we’ve pushed it to the point of perfection.”

There is scope for this research to have direct technological applications, or to improve existing technologies, particularly in areas such as display screens and solar cells, or even in flexible electronics.

Yet the direct applications are not what excites the professor most of all.

He uses the example of graphene, talking of the predictions surrounding its possibilities, the uses to which it could be put, but saying that, until we have better, more stable, samples, it is hard to carry out the necessary research.

“This is what we’ve done with quantum dot solids, taking them to an unprecedented level of perfection,” says Hanrath, “so what excites us most is the scientific advance in itself and where this could take us next.” 

You've read  of  free articles. Subscribe to continue.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Quantum dots finally take a giant leap forward
Read this article in
https://www.csmonitor.com/Science/2016/0225/Quantum-dots-finally-take-a-giant-leap-forward
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe