When and where do quake aftershocks happen?

Scientists are getting better at forecasting the location and magnitude of earthquake aftershocks.

|
(AP Photo/Niranjan Shrestha)
Nepalese people stand beside the funeral pyre of a family member who died in Saturday's earthquake in Bhaktapur, Nepal, Sunday, April 26, 2015. A powerful, magnitude 6.7 aftershock shook the Kathmandu area of Nepal on Sunday, a day after the massive earthquake devastated the region and destroyed homes and infrastructure.

Large aftershocks not only rattle nerves, they also can cause new destruction and injuries by further damaging structures hit by the initial earthquake. While there was no way to predict the deadly magnitude-7.8 earthquake that rocked Nepal on April 25, scientists are developing ways to forecast where the worst aftershocks will hit. A new study finds that the biggest aftershocks tend to strike at the edge of the original earthquake.

"We're very concerned about large aftershocks," said study author Nicholas van der Elst, a seismologist with the U.S. Geological Survey (USGS). "We really want to know where to expect that magnitude 6 if it's in a major metropolitan area." [Nepal Earthquake Photos: Odd Effects of Kathmandu Temblor]

The largest aftershock so far in Nepal was measured at magnitude 6.7.

By analyzing thousands of quake records, Van der Elst has shown that location is as important as earthquake size in forecasting large aftershocks. The study is part of a major effort on the part of some scientists to develop short-termearthquake forecasts for the public. The findings were presented last week at the annual meeting of the Seismological Society of America in Pasadena, California.

Aftershocks, by definition, are smaller than the main earthquake and must occur within one fault-rupture length of the initial shock. The fault rupture is the area of the fault that is torn apart during the earthquake.

Scientists already forecast the risk of aftershocks based on long-term observations of earthquake patterns. For instance, the biggest aftershocks usually hit within days of the main earthquake, and trail off in the following days and months. The largest aftershock following the magnitude-9 Japan earthquake in 2011 was a magnitude 7.9 on the same day. The 2010 Haiti earthquake, a magnitude 7, was followed by a magnitude-5.9 aftershock eight days after the temblor. In general, the larger the earthquake, the larger and more numerous the aftershocks, and the longer they will continue, according to this model.

For the Nepal earthquake, the USGS forecast a 100 percent chance of magnitude-5 aftershocks this week, a 54 percent chance of magnitude-6 temblors and a 7 percent chance of a magnitude-7 aftershock.

Van der Elst's analysis could boost the accuracy of aftershock forecasts by adding a location to the size estimates. He found that smaller aftershocks tend to strike within the main earthquake rupture, on sticky bits of the fault that did not break during the original earthquake. This limits the earthquake size, because there is not much left to rupture, he said.

Van der Elst said larger aftershocks start at the edge of the earthquake tear, where the quakes can break new ground on unbroken fault areas. (Aftershocks can also strike off the fault entirely, as the surrounding rock adjusts to its new position.)

"A really big earthquake ruptures a fresh patch of the fault," Van der Elst told Live Science. "If you want to grow a large aftershock, it needs to grow outside the main shock rupture."

While the results make intuitive sense, demonstrating that nature follows these statistical patterns is the first step toward including aftershock location in official forecasts. "If you actually know where those larger earthquakes were likely to occur, it would help you plan your emergency response," Van der Elst said.

forecast model that includes location statistics would likely be useful in places such as California, where public agencies must rapidly respond to the threat of aftershocks, said Ned Field, a USGS research scientist in Golden, Colorado, who was not involved in the study. "If you're a utility company trying to decide what to do, these details can matter," he told Live Science.

To make matters more complicated, there are some special cases involving aftershocks. Occasionally an aftershock is larger than the initial earthquake. In this case, geologists rename the first earthquake, calling it a foreshock, and the aftershock becomes the primary earthquake. Also, there are usually other faults nearby that have built up strain over the years. A nearby earthquake may push these faults over the edge. These events are not considered aftershocks, however, because the added stress from the earthquake was just the tipping point that triggered the fault to release its pent-up energy, resulting in a new earthquake.

Follow Becky Oskin @beckyoskin. Follow Live Science @livescienceFacebook & Google+Originally published on Live Science.

Copyright 2015 LiveScience, a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to When and where do quake aftershocks happen?
Read this article in
https://www.csmonitor.com/Science/2015/0502/When-and-where-do-quake-aftershocks-happen
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe