Scientists can see around corners using lasers and computers

Ordinarily it's impossible to see an object around a corner, but researchers have devised a system of pulsing lasers and computer algorithms that allow them to see the seemingly unseeable.

Christopher Barsi and Andreas Velten, MIT Media Lab
The mannequin, shown here, is not in the camera's line of sight.

Superman had X-ray vision, but a pair of scientists has gone one better: seeing around corners.

Ordinarily, the only way to see something outside your line of sight is to stand in front of a mirror or similarly highly reflective surface. Anything behind you or to the side of you reflects light that then bounces off the mirror to your eyes.

But if a person is standing in front of a colored wall, for example, she can't see anything around a corner, because the wall not only absorbs a lot of the light reflected from the objects around it, but scatters it in many directions as well. (This is especially true of anything with a matte finish.)

MIT researchers Ramesh Raskar and Andreas Velten got around this issue using a laser, a beam-splitter and a sophisticated algorithm. They fired a laser through the beam-splitter and at a wall, with pulses occurring every 50 femtoseconds. (A femtosecond is a millionth of a billionth of a second, or the time it takes light to travel about 300 nanometers).

When the laser light hits the splitter, half of it travels to the wall, and then bounces to the object around the corner. The light reflects off the object, hitting the wall again, and then returns to a camera. The other half of the beam just goes directly to the camera. This half-beam serves as a reference, to help measure the time it takes for the other photons (particles of light) to return to the camera.

Using a special algorithm to analyze when the returning photons arrive and checking them against the reference beam, the scientists were able to reconstruct an image of the object they were trying to see.Velten noted that when analyzing the photons, the ones that hit an object in a room will return sooner than the ones that bounce off a rear wall, and the algorithm accounts for that. They could even see three-dimensional objects, such as a mannequin of a running man used in the experiment.

The resolution isn't, of course, anywhere near as good as a human eye. It can pick up centimeter-size details at a distance of a few meters, so it can only resolve relatively large objects. Raskar noted that a shorter exposure time could boost resolution; the camera is currently using exposures measured in picoseconds. But even so, it is a useful method for detecting things that for whatever reason are not directly in the line of sight. Velten also noted that you could use a similar algorithm in reconstructing images of the insides of a backlit object – something he wants to explore in medical imaging using visible light, which doesn't have all the bad effects of X-rays or the limitations (such as not being able to "see" soft tissues well). [Vision Quiz: What Animals Can See]

Raskar and Velten are no strangers to playing with photons. In December 2011, they demonstrated a camera that could capture frames a trillion times every second.

Robert Boyd, a professor of optics at the University of Rochester, wrote in an email to LiveScience that he is familiar with the duo's "seeing around corners" work and that it is fundamentally sound. How useful it ends up being he isn't sure, though he added that there is no reason it couldn't be implemented in the real world outside of a lab.

For his part, Raskar has always been fascinated with the unseen. "When I was a teenager, it has always bothered me that the world is created around me in real time, that it doesn't exist if I do not look at it," he said. "And so I started thinking about that — ways tomake the invisible visible."

The team foresees the technique's applications including anything that requires seeing out of the line of sight. "It really changes what we can do with a camera," Raskar said. "All of a sudden, the line of sight is no longer a consideration."

The work is being published online Tuesday (March 20) in the journal Nature Communications.

Follow LiveScience for the latest in science news and discoveries on Twitter @livescience and on Facebook.

You've read  of  free articles. Subscribe to continue.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to