Courtesy of Robert W. McGregor/University of Manchester
The X-ray crystal structure of a 192-atom-loop molecular 819 knot featuring iron ions (shown in purple), oxygen atoms (red), nitrogen atoms (dark blue), carbon atoms (shown in metallic grey, with one of the building blocks shown in light blue) and a single chloride ion (green) at the center of the structure.

Scientists tie the world's tightest knot

Researchers at the University of Manchester hope their chemically produced, three-strand molecular knot will some day form the foundation for very light and strong materials.

Knots have been around for thousands of years. But now, a team of researchers from the University of Manchester has added a new twist to one of the most basic technologies known to humans.

Using cutting-edge chemical techniques, the researchers have created the tightest knot ever made, woven on a molecular level. The new knot is a circular triple helix only 20 nanometers long, containing only 192 atoms, the researchers report in a paper published in the Jan. 13 issue of Science magazine.

While scientists have known for decades that molecular knots like this one are theoretically possible, it has proven difficult to create knots of such complexity, with previous molecular knots using only two strands woven together in very basic patterns. This is the first molecule to incorporate three strands into its structure, in a leap forward for a technology that the researchers suggest could eventually lead to a new generation of super-light and super-strong knotted materials.

Until now, there had only been three molecular knots created by scientists at this scale: the trefoil, the figure-eight, and the pentafoil, a paltry amount compared to the 6 billion known prime knot formations, Science's Jessica Boddy explains in a brief. But this new circular triple helix is the most complex knot ever created on this scale, with a total of 8 strand crossings, with each crossing only 24 atoms apart.

"That's very, very tight indeed," David Leigh, a professor of chemistry at the University of Manchester and study leader, told The Guardian. "It is definitely the most tightly knotted physical structure known."

The entire structure is about 200,000 times thinner than a human hair and requires much more chemical finesse to weave than a macro-scale knot.

"These strands we are knotting are so small that you can't grab the ends and tie them like you would a shoelace," Dr. Leigh told The Guardian. "Instead we use a chemical process called self assembly, where we mix the organic building blocks with ions that the building blocks then wrap around to make crossing points in the right places."

In order to create the new knot, the team first created a solution of strands of carbon, nitrogen, and oxygen atoms, according to the Guardian. When mixed with chloride and iron ions in a heated solvent, the strands wove themselves together over about 24 hours. Then, the ends of each strand were fused together in a continuous loop, and the ions were washed away, leaving only the knot. X-ray crystallography images confirmed that the knot had formed as the researchers had expected.

"It's fantastic," Edward Fenlon, a chemist at Pennsylvania's Franklin & Marshall College, who was not part of the study, told NPR. "It's really impressive that they've been able to go beyond some of the more simple knots with just three crossings."

Leigh hopes that building increasingly complex molecular knots will eventually lead to weaving, which could, in turn, lead to new technologies.

"Bullet-proof vests and body armour are made of kevlar, a plastic that consists of rigid molecular rods aligned in a parallel structure - however, interweaving polymer strands have the potential to create much tougher, lighter and more flexible materials in the same way that weaving threads does in our everyday world," said Leigh in a statement from Manchester University. "Some polymers, such as spider silk, can be twice as strong as steel so braiding polymer strands may lead to new generations of light, super-strong and flexible materials for fabrication and construction."

Of course, there is still a long way to go before this kind of micro-weaving is a reality.

"Historically, knotting and weaving have led to all kinds of breakthrough technologies," Leigh told NPR. "Knots should be just as important at the molecular level, but we can't exploit that until we learn how to make them, and that's really what we're beginning to do."

You've read  of  free articles. Subscribe to continue.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to

QR Code to Scientists tie the world's tightest knot
Read this article in
QR Code to Subscription page
Start your subscription today