Why is NASA playing with fire in space?

The nation's space agency is looking into how fire acts in a zero gravity atmosphere.

NASA
Orbital ATK's Cygnus cargo craft approaches the International Space Station on Dec. 9, 2015.

In a few days, NASA will send a box into space and remotely light materials inside of it on fire to learn more about how zero gravity and limited oxygen affect flame size and spread of fire.

The findings from the experiment, and a couple of others later this year, will help the agency keep crews safe on future space missions by informing the type of gear and other craft materials NASA uses.

“A spacecraft fire is one of the greatest crew safety concerns for NASA and the international space exploration community,” said Gary Ruff, a NASA aerospace engineer who is helping conduct this experiment, called Spacecraft Fire Experiment-I, or Saffire-I, in partnership with the European Space Agency.

NASA will send the box to space on March 22 aboard an Orbital ATK Cygnus aircraft from the NASA Kennedy Space Center in Florida. Cygnus will first drop off supplies to the International Space Station, and then fly off – far away from the space station – to host the fire experiment before it reaches the Earth’s atmosphere.

The 3- by 5-foot experiment box will be split into two compartments. On one side will be a computer and instruments such as sensors, high definition video cameras and signal processing equipment. They will measure oxygen, carbon dioxide, heat, pressure and flame growth, and record the flame.

The other side of the box will hold the equipment that will ignite the flame and burn the materials inside, all of which are used routinely for astronaut clothing and for other things on spacecraft. On the first Saffire experiment, the material will be a 16- by 37-inch piece of cloth blended of fiberglass and cotton.

Called SIBAL, this cloth will be burned first from the bottom to see how the flame spreads. And if the flame extinguishes itself, scientists will light it at the top and see what happens as the flame moves opposite to the airflow, NASA explained.

“Saffire seeks to answer two questions,” said David Urban, NASA’s head of the experiment. “Will an upward spreading flame continue to grow or will microgravity limit the size? Secondly, what fabrics and materials will catch fire and how will they burn?” he explained.

The experiment will take about two-and-a-half hours, but the Cygnus will stay in space for seven days to make sure that all the data is transmitted back to the research team at NASA’s Glenn Research Center in Cleveland, Ohio. Ultimately, Cygnus and Saffire-I will burn up before entering Earth’s atmosphere.

NASA says Saffire will ignite the largest fire, burning the biggest size samples, the agency has studied.

“Saffire will be the biggest man-made fire ever in space,” said Dr. Ruff. “Currently, we can only conduct small combustion experiments in the microgravity environment of the space station. Saffire will allow us to safely burn larger samples of material without added risk to the station or its crew,” he said.

The next fire experiment, Saffire II, is scheduled to launch on another space station supply aircraft in June from Wallops Flight Facility in Virginia. Then, scientists will ignite nine materials commonly used in space, including flame retardant fabrics used for astronaut clothing, Plexiglas window samples, silicone composites, and materials used for storage containers. Each sample will be 2 by 11 inches, the sample size used by NASA for Earth-bound fire tests.

According to NASA, there has never been a fire on the International Space Station, though there was a big one in 1997 on the Russian space station Mir. The fire was fueled by an oxygen generator. The generator had to run out of oxygen for the fire to burn out.

You've read  of  free articles. Subscribe to continue.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.