A strong tug might have pulled the moon to its inclined orbit

Researchers have created a new model that could explain the 'lunar inclination problem' with gravity.

Courtesy of Laetitia Lalila
Gravitational interactions of small bodies with the Earth-Moon system shortly after its formation. Image created based on NASA photographs.
NASA/Reuters/File
A gibbous moon, visible above Earth's atmosphere, was photographed by an STS-128 crew member on the Space Shuttle Discovery, on August 30, 2009.

The moon’s orbital plane, its path around the Earth, is inclined. The angle of that incline has puzzled scientists. 

The moon is generally thought to have formed in a disk of debris created when a planet-sized body slammed into the still-forming Earth some 4.5 billion years ago. In that scenario, the plane of the moon's orbit should be inclined only 0.5 degrees off the plane of Earth’s current orbit. But, in what’s called the "lunar inclination problem," the moon's orbital plane is actually angled at about 5 degrees. 

Now, researchers propose that a separate, later cosmic event pulled the moon into its current tenfold greater incline.

In the new model, a small planetary body swung by the early Earth, tugging at the moon. That gravitational force could explain the moon's inclined orbital plane, according to a new paper published Wednesday in the journal Nature.

"This would be a natural way to have the moon start in an equatorial orbit and, without invoking any special circumstances, to naturally come out with the system that we have," says Kaveh Pahlevan, author of the study and the Henri Poincaré Fellow at the Observatory of Côte d'Azur, in an interview with The Christian Science Monitor. 

"We did a numerical experiment where we considered that lunar formation happened in the context of Earth’s formation," says Dr. Pahlevan.

"There are collisions in Earth’s formation that happened both before the moon-forming event and after," Pahlevan says. Those collisions brought more material to the early Earth, making it to grow. "We wanted to test whether the accretion that happened after lunar formation can be the cause of this tenfold additional excitation of the lunar orbit."

The researchers' numerical model simulated many flybys of cosmic bodies of about the same mass of the moon or less. Using these models, the scientists were able to examine the effects of such close encounters with the early Earth-moon system.

"We’ve had this idea that Earth may have accreted a small amount of mass after the moon formed," says Pahlevan. "As the Earth is accreting, there are bodies in its vicinity and before any particular body collides with the Earth, it has many misses. This is how it can potentially tug at the moon and alter and 'excite' its orbit."

Such a collision-less interaction could explain why the moon’s orbital plane is angled tenfold higher than expected.

Other explanations have been proposed in the past, says Pahlevan. "[They] involve events that are more or less simultaneous with moon formation,” he says.

In the previous models, the excitation that angled the moon's orbital plane happened as part of the aftermath of the moon-forming collision itself, in the thousand years following the event, Pahlevan says. "Whereas our scenario envisions that the moon in fact did start in that well-behaved equatorial orbit and only much later, millions or tens of millions years later, its orbit was excited."

Pahlevan says the results surprised him. "We expected the lunar orbit to be excitable, but I didn’t anticipate it to be this sensitive, this excitable [after] collision-less events," he says. 

There’s still much more work to be done. That sensitivity leads to further research and the new model still needs more testing, says Pahlevan. 

Although the incline of the moon’s orbital plane puzzles scientists, it is also the reason lunar eclipses are special. "The fact that the lunar orbit is inclined by ~5 degrees from the Earth's orbital plane is the reason we do not have eclipses every month," Pahlevan explains in an e-mail. "Since the moon itself subtends ~0.5 degree on the sky as seen from Earth, if the lunar orbit were only inclined by ~0.5 degree, we would have had at least partial solar eclipses every month!"

"The story of the moon’s formation is part of the story of Earth’s formation," says Pahlevan in the interview. "So this is really a chapter in the story about how the Earth came to be the planet that it is. The record of how the Earth formed is fragmentary, so any characteristic of the modern system that can let us see and infer that very distant history is valuable. It provides a new window into our own origin story."

You've read  of  free articles. Subscribe to continue.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.