Astronomers spot auroras outside our solar system

The brilliant displays known as the northern and southern lights exist not just on Earth, but on all planets in our solar system with a magnetic field. Now, for the first time, astronomers have detected them on a brown dwarf some 18 light years from Earth.

|
Chuck Carter and Gregg Hallinan/Caltech
An artist's concept of brilliant auroras on the brown dwarf LSR J1835+3259, a misfit failed star about 18.5 light-years from Earth. The auroras are the first ever detected beyond our own solar system.

Astronomers have discovered the first auroras ever seen outside the solar system — alien light shows more powerful than any other auroras ever witnessed, perhaps 1 million times brighter than any on Earth, researchers say.

Auroras could soon be detected from distant exoplanets as well, investigators added.

Auroras, the radiant displays of colors in the sky known on Earth as the northern or southern lights, are also seen on all of the other planets with magnetic fields in the solar system. They are caused by currents in the magnetosphere of a planet — the shell of electrically charged particles captured by a planet's magnetic field — that force electrons to rain down on the atmosphere, colliding with the molecules within and making them give off light. [Amazing Auroras on Earth in 2015 (Photos)]

To see if auroras might be seen outside the solar system, astronomers investigated a mysterious Jupiter-size object called LSR J1835+3259, located about 18.5 light-years from Earth. The object is a few dozen times more massive than Jupiter, suggesting it is too heavy to be a planet but too light to be a star, the researchers said.

They suggested that LSR J1835+3259 is a brown dwarf, a strange misfit object sometimes known as a failed star. As massive as brown dwarfs are compared to planets, they are too puny to force atoms to fuse together and release the nuclear energy that powers stars.

In 2001, scientists unexpectedly discovered that brown dwarfs could generate radio waves. "That was very surprising," said Gregg Hallinan, an astronomer at the California Institute of Technology in Pasadena and lead author of the new study. "Typically, we see radio waves from really active stars, not objects with much cooler temperatures like brown dwarfs," he told Space.com.

In 2008, Hallinan and his colleagues found that LSR J1835+3259 emitted radio waves in pulses. "We knew that radio pulses from planets in our own solar system were caused by aurorae, so we thought maybe brown dwarfs had aurorae too," he said.

Using the Karl G. Jansky Very Large Array in New Mexico to scan radio wavelengths of light, along with the Hale Telescope on Palomar Mountain in California and the W. M. Keck Observatory in Hawaii to scan visible wavelengths of light, the researchers detected the telltale signs of auroras on LSR J1835+3259.

"If you were to somehow stand on the brown dwarf's surface and survive — the surface gravity is maybe 100 times more intense than Earth's, and the temperature is several hundred to several thousand degrees — you'd see a beautiful bright-red aurora," Hallinan said. "The colors of auroras depend on whatever the atmosphere they take place in is made of. In Earth's case, it's mostly green and blue and red because of oxygen and nitrogen. When it comes to Jupiter, Saturn and brown dwarfs — which have hydrogen-rich atmospheres — you'd see red, and there would be ultraviolet and infrared wavelengths as well."

Until now, the brightest known auroras came from Jupiter, which has the most powerful magnetic field in the solar system. In comparison, these newfound auroras are more than 10,000 times — and maybe 100,000 times — brighter than Jupiter's, Hallinan said. This is because LSR J1835+3259 has a magnetic field perhaps 200 times stronger than Jupiter's, he said.

It remains a mystery what might drive LSR J1835+3259's auroras. On Earth, auroras are driven by winds of electrically charged particles streaming from the sun, but this brown dwarf does not have a stellar companion.

One possibility is that LSR J1835+3259's auroras are driven by an Earth-size planet that generates strong currents in the brown dwarf's magnetosphere as it barrels through its magnetic field, Hallinan said. Auroras on Jupiter are driven, in part, by its moon Io plowing through Jupiter's magnetic field.

Another possibility is that electrically charged particles might rain down on the brown dwarf from above to drive the auroras. It remains uncertain where such particles might come from — perhaps interstellar gas and dust, or matter venting from a nearby volcanic planet, or plasma originally spewed upward from the brown dwarf itself, Hallinan said.

Hallinan and his colleagues have developed a new array of radio telescopes, the Owens Valley Long Wavelength Array in California, dedicated to detecting far-off auroras. "We've already confirmed aurorae for a few more objects," Hallinan said. "Maybe 10 percent or higher of brown dwarfs may exhibit aurorae."

Moreover, Hallinan suggested that it may be possible to detect auroras from exoplanets circling other stars — specifically, gas giants larger than Jupiter with powerful magnetic fields. "Extrasolar aurorae could help us measure how strong the magnetic fields of extrasolar planets are," Hallinan said.

The scientists detail their findings in the July 30 issue of the journal Nature.

Follow us @SpacedotcomFacebookor Google+. Originally published on Space.com.

Copyright 2015 SPACE.com, a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Astronomers spot auroras outside our solar system
Read this article in
https://www.csmonitor.com/Science/2015/0730/Astronomers-spot-auroras-outside-our-solar-system
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe