Are we close to cheaper cleaner methanol?

A newly discovered nickel-gallium catalyst can convert carbon dioxide into methanol leaving fewer by-products, say scientists.

|
Jens Hummelshoj/SLAC
Artist's rendering of the nickel-gallium active site, which synthesizes hydrogen and carbon dioxide into methanol. Nickel atoms are light grey, gallium atoms are dark grey, and oxygen atoms are red.

We are probably a step closer to producing low-cost clean methanol, a potential source of fuel in the future.

Thanks to a newly discovered nickel-gallium catalyst that can convert hydrogen and carbon dioxide into methanol leaving behind considerably less carbon monoxide as a by-product, according to a paper titled "Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol" published in the March 2 online edition of the journal Nature Chemistry.

To start with, researchers spent three years studying and examining the copper-zinc-aluminum catalyst, a commonly used catalyst in the production of methanol. 

Using a technique known as computational materials design, scientists did a threadbare analysis of hundreds of materials and compared them to the copper-zinc-aluminum catalyst. 

"You get ideas for new functional materials based entirely on computer calculations. There is no trial-and-error in the lab first. You use your insight and enormous computer power to identify new and interesting materials, which can then be tested experimentally," Jens Nørskov, a professor of chemical engineering at Stanford and co-author said in a press release.

The team found that nickel-gallium catalyst would be probably the best one to replace the conventional copper-zinc-aluminum catalyst in the production of methanol.

After carrying out tests in the laboratory, the researchers confirmed that the new catalyst indeed produced less carbon monoxide and a higher yield of methanol. The temperature required for such a reaction is about 200-250 degree celsius, says Dr. Nørskov

 "You also want a catalyst that's stable and doesn't decompose. The lab tests showed that nickel-gallium is, in fact, a very stable solid," said Ib Chorkendorff from the Technical University of Denmark and a co-author of the research paper.

But this new catalyst is not perfect yet, because it does leave some carbon monoxide behind.

In fact, if the nickel-gallium catalyst "contains just a few nanoparticles of pure nickel, the output drops quite a bit, because pure nickel is lousy at synthesizing methanol. In fact, it makes all sorts of chemical byproducts that you don't want," Dr. Chorkendorff said. 

Nickel is plenty in nature and gallium is used in electronic industry.

Used in manufacturing paints, polymers, glues, and biofuels, methanol is "processed in huge factories at very high pressures using hydrogen, carbon dioxide and carbon monoxide from natural gas," said Felix Studt, a staff scientist at SLAC National Accelerator Laboratory and the lead author of the paper.

Current production of methanol though is dependent upon hydrogen and carbon dioxide, largely obtained from hydrocarbons (mainly methane), says Nørskov.

The bigger aim therefore is to  "synthesize methanol using hydrogen from renewable sources, such as water split by sunlight, and carbon dioxide captured from power plants and other industrial smokestacks," Nørskov said. 

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Are we close to cheaper cleaner methanol?
Read this article in
https://www.csmonitor.com/Science/2014/0303/Are-we-close-to-cheaper-cleaner-methanol
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe