Higgs boson coming into focus, say scientists

Higgs boson: The hunt for the Higgs boson, the so-called God Particle, continues. But in a study released today, scientists say they're getting closer to proving the existence of Higgs boson, but the image is 'fuzzy.'

At the Fermi National Accelerator laboratory in Batavia, Ill., researchers are hopeful the elusive Higgs boson particle (aka the 'God particle') may soon be recorded in this collider detector, one of two at the facility. Fermilab nuclear accelerator.

Scientists say they have gotten even closer to proving the existence of the elusive Higgs boson, the so-called "God particle" that supplies mass to matter and would complete Albert Einstein's theory of the universe.

Analyzing data from some 500 trillion sub-atomic particle collisions designed to emulate conditions right after the Big Bang when the universe was formed, scientists at Fermilab outside Chicago have produced some 1,000 Higgs particles over a decade of work.

"Unfortunately, this hint is not significant enough to conclude that the Higgs boson exists," said Rob Roser, a physicist at Fermilab, near Chicago, in explaining the findings being presented on Wednesday at a conference in La Thuille, Italy.

RECOMMENDED: Are you scientifically literate? Take the quiz

The image scientists have of the short-lived Higgs particles, which almost immediately decay into other particles, is still slightly "fuzzy," Roser said.

The probability that what physicists detected is not a Higgs boson and is instead a statistical fluke was 1 in 250, which is near the threshold of 1 in 740 that physics has set to establish proof of a sub-atomic particle's existence.

The hunt for the Higgs boson is significant because it would show the existence of an invisible field thought to permeate the entire universe. The Higgs field was posited in the 1960s by British scientist Peter Higgs as the way that matter obtained mass after the universe was created during the Big Bang.

According to the theory, it was the agent that made the stars, planets and life possible by giving mass to most elementary particles. Some gave it the nickname the "God particle."

Discovery of the Higgs would also complete Einstein's Standard Model of Physics. If it does not exist, scientists would have to search elsewhere for how particles gained mass and why they are not merely shooting aimlessly through the universe.

The weight of Higgs particles found at Fermilab was consistent with those detected at the more powerful particle accelerator, the Large Hadron Collider, at the CERN research center near Geneva, Switzerland.

CERN, the European Organization for Nuclear Research, is hot on the trail of the Higgs boson and hopes to gain proof of the particle before its accelerator temporarily shuts down at the end of 2012 for an upgrade.

Before Fermilab's four-mile (6.3-km) -long Tevatron was closed for good in September 2011 and the particle accelerator baton handed to CERN, scientists pushed the collider to produce as many sub-atomic collisions as possible.

The two circular accelerators operate differently, Roser said. Fermilab's accelerator fired protons at antiprotons, while CERN's 16.7-mile (27-km) -long accelerator creates collisions between two beams of protons.

An analogy posed by physicist Gregorio Bernardi in a statement released by Fermilab was of two people taking a picture of a child in a park from different vantage points.

"One picture may show a child that is blocked from the other's view by a tree. Both pictures may show the child but only one can resolve the child's features. You need to combine both viewpoints to get a true picture of who is in the park," he said.

Physicists from around the world are at work at both laboratories, with hundreds still laboring at Fermilab analyzing the data from its experiments.

"We've used up most of our data" at Fermilab, Roser said. "We'll do a few more experiments and try to have a final answer in June." (Editing by Bill Trott)

RECOMMENDED: Are you scientifically literate? Take the quiz

You've read  of  free articles. Subscribe to continue.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.