Subscribe

What were ammonites' lives like? Isotope study reveals clues.

Using isotopic analysis, researchers have revealed new ecological data about ancient mollusks.

  • close
    hanks to a major donation of the collections of paleontologists Royal and Gene Mapes of Ohio University, over 540,000 marine fossils have been added to the Museum's collection. Most of the collection is from the Paleozoic era, around 240-350 million years ago, and includes both marine invertebrates like ammonites, as well as fossil fish and sharks. The wealth of well preserved specimens in the collection allows Museum scientists to explore new questions and technologies.

    In this video, Museum curators Neil Landman and John Maisey talk about the importance of this new addition to the Museum's collection, and the interesting questions that have risen from its specimens.
    View Caption
  • About video ads
    View Caption
of

In medieval Europe, ammonite stones were believed to have divine powers. In Nepal, Hindus have long interpreted them as manifestations of Vishnu.

To Jocelyn Sessa, they’re a window to the past.

At Mississippi’s Owl Creek Formation, researchers are using isotopic analysis to reconstruct the habitats of these ancient mollusks. Armed with new data, they hope to piece together details about prehistoric climates. Their study, which was published Monday in PNAS, was led by Dr. Sessa, a paleontological fellow at the American Museum of Natural History.

Ammonites were a group of marine mollusks, closely related to the octopus and squid of today. They first appeared in the Devonian period, more than 400 million years ago, and group persisted until the Cretaceous-Paleogene extinction event that ended the Mesozoic period. Thanks to their sturdy calcium composition, ammonites' distinctive shells, most of which were simple spirals, tend to be well-preserved and quite common.

And because of their ubiquity, ammonites are considered excellent index fossils. Geologists and paleontologists alike use them as reference points when dating rock layers. But while the “when” is abundantly clear, relative little is known about “how” these mollusks lived.

“When I first started this study, I was surprised to realize how little is known about ammonites' ecologies,” Sessa says. “In general, this is because ammonites are extinct, and their modern relatives – squids, octopus, and Nautilus – exhibit a variety of migrational behaviors.”

But thanks to the unusual conditions at the Owl Creek Formation, this knowledge gap is closing. Unlike many other fossil sites, which preserve just the ammonite specimens, Owl Creek is home to other well-preserved marine fossils. Sessa and colleagues performed oxygen and carbon isotopic analysis on these organisms, as well as several types of ammonites. By comparing the chemical makeup of these fossils, they could determine the depth of ammonite habitats and make inferences about their ecosystem generally.

Researchers found that baculite and scaphite ammonites were chemically similar to benthic organisms, which are found exclusively on the sea floor. Sphenodiscid ammonites, by comparison, had chemical compositions associated with plankton – these mollusks probably lived closer to the water’s surface.

“The unique aspect of the Owl Creek outcrop, and of this study, is that all of these organisms were found together – one locality, same stratigraphic horizons. So we are reconstructing the temperatures of one water mass,” Sessa says. “Other studies have analyzed the oxygen isotopic composition of ammonites and related it to their depth habitat, but those studies have not had co-occurring benthic and planktic organisms to constrain the temperatures of a water column.”

According to Sessa, this data could spur valuable paleoecological research.

“Now that the depth habitat of these three families of ammonites has been established, in the future these taxa could be used to provide temperature estimates of particular water masses,” Sessa says. “The sphenodiscids [provide] estimates of nearshore, surface waters, and the baculites and scaphites of the near bottom. Given their commonness, these taxa could contribute a lot of new paleo-temperature data.”

About these ads
Sponsored Content by LockerDome
 
 
Make a Difference
Inspired? Here are some ways to make a difference on this issue.
FREE Newsletters
Get the Monitor stories you care about delivered to your inbox.
 

We want to hear, did we miss an angle we should have covered? Should we come back to this topic? Or just give us a rating for this story. We want to hear from you.

Loading...

Loading...

Loading...

Save for later

Save
Cancel

Saved ( of items)

This item has been saved to read later from any device.
Access saved items through your user name at the top of the page.

View Saved Items

OK

Failed to save

You reached the limit of 20 saved items.
Please visit following link to manage you saved items.

View Saved Items

OK

Failed to save

You have already saved this item.

View Saved Items

OK