Skip to: Content
Skip to: Site Navigation
Skip to: Search

So what exactly is this Higgs boson thing anyway? (+video)

Why do some call it the 'God particle'? And what, exactly, does it do?

By Natalie WolchoverLifes Little Mysteries / July 5, 2012

This image shows a typical candidate event including two high-energy photons whose energy (depicted by red towers) is measured in the CMS electromagnetic calorimeter. The yellow lines are the measured tracks of other particles produced in the collision. The pale blue volume shows the CMS crystal calorimeter barrel. To cheers and standing ovations, scientists at the world's biggest atom smasher claimed the discovery of a new subatomic particle, calling it "consistent" with the long-sought Higgs boson.



In 1964, the British physicist Peter Higgs wrote a landmark paper hypothesizing why elementary particles have mass. He predicted the existence of a three-dimensional "field" that permeates space and drags on everything that trudges through it. Some particles have more trouble traversing the field than others, and this corresponds to them being heavier. If the field — later dubbed the Higgs field — really exists, then Higgs said it must have a particle associated with it: the Higgs boson.

Skip to next paragraph
For decades now, scientists have theorized about a missing piece to the puzzle of the universe -- nicknamed the "God particle" -- that makes all the parts of an atom stick together, giving everything its size and shape.

Fast forward 48 years: On Wednesday (July 4), physicists at the Large Hadron Collider (LHC), the world's largest atom smasher in Geneva, Switzerland, announced they had discovered a Higgs-like particle at long last. If the new particle turns out to be the Higgs, it will confirm nearly five decades of particle physics theory, which incorporated the Higgs boson into the family of known particles and equations that describe them known as the Standard Model.

The search for the Higgs gained a level of public attention unusual for physics partly thanks to the physicist Leon Lederman's 1993 book "The God Particle" (Dell Publishing). Lederman gave the Higgs its godly nickname because the particle is "so central to the state of physics today, so crucial to our final understanding of the structure of matter, yet so elusive," he wrote in the book.

However, he quipped that the second reason was that "the publisher wouldn't let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing."

Indeed, the Higgs boson eluded detection through the construction and shutdown of two expensive high-energy particle colliders built partially for the purpose of detecting it. In these colliders, particles are accelerated through a tunnel and then smashed together, producing an excess of energy that sometimes takes the form of new and exotic particles.

Only the Large Hadron Collider at CERN Laboratory, the most powerful particle collider ever built, turned out to probe energies high enough to generate a Higgs particle, which is roughly 125 times the mass of a proton. [What If You Put Your Hand in the LHC Beam?]

Read Comments

View reader comments | Comment on this story

  • Weekly review of global news and ideas
  • Balanced, insightful and trustworthy
  • Subscribe in print or digital

Special Offer


Editors' picks

Doing Good


What happens when ordinary people decide to pay it forward? Extraordinary change...

Endeavor Global, cofounded by Linda Rottenberg (here at the nonprofit’s headquarters in New York), helps entrepreneurs in emerging markets.

Linda Rottenberg helps people pursue dreams – and create thousands of jobs

She's chief executive of Endeavor Global, a nonprofit group that gives a leg up to budding entrepreneurs.

Become a fan! Follow us! Google+ YouTube See our feeds!