Skip to: Content
Skip to: Site Navigation
Skip to: Search

Scientists unveil biggest ever map of universe's dark matter

Even though it cannot be seen directly, dark matter, which represents 98 percent of the mass of the universe, exerts a gravitational pull on normal matter, including light. By measuring its tug on starlight, astronomers have mapped the distribution of this mysterious substance. 

By Clara / January 9, 2012

The Canada-France-Hawaii Telescope mapped dark matter during each season . The color inset shows the previous largest COSMOS dark matter map compared with the full moon .

Van Waerbeke, Heymans, and CFHTLens collaboration



The hidden side of the universe is now a bit more illuminated thanks to the largest map yet of dark matter, the strange substance thought to inhabit much of space.

Skip to next paragraph

Scientists have created the largest scale rendering of dark matter across the universe, revealing a picture of the invisible stuff thought to represent 98 percent of all matter in the universe.

Dark matter has never been directly detected, but its presence is felt through its gravitational pull on normal matter. Scientists suspect dark matter is made of some exotic particle that doesn't interact with regular atoms.

"We know very little about the dark universe," said co-leader of the study, Catherine Heymans of the University of Edinburgh's School of Physics and Astronomy, during a press conference announcing the findings here at the 219th meeting of the American Astronomical Society."We don't know what the dark matter particle is. It's very widely believed that the final understanding of the dark universe is going to have to invoke some new physics."

The new map reveals the distribution of dark matter over a larger swath of space than ever before. It covers more than 1 billion light-years. One light-year is the distance light travels in a year, about 6 trillion miles (10 trillion kilometers). [See the new giant dark matter map]

Warping light

To trace invisible dark matter, the researchers searched for signs of its gravitational tug on other matter. They measured an effect called gravitational lensing, which occurs when gravity from a massive body bends space-time, causing light to travel along a curved path through space and appear distorted when it reaches Earth.

The scientists measured warped light from 10 million distant galaxies in four different regions of the sky, caused when those galaxies' light passed by large bundles of dark matter that bent its path.

"It is fascinating to be able to 'see' the dark matter using space-time distortion," another co-author of the study, Ludovic Van Waerbeke of the University of British Columbia, said in a statement. "It gives us privileged access to this mysterious mass in the universe which cannot be observed otherwise. Knowing how dark matter is distributed is the very first step towards understanding its nature and how it fits within our current knowledge of physics."

Scientists hope that by plotting out the distribution of dark matter throughout space, they will come closer to understanding what it is.

"By analyzing light from the distant universe, we can learn about what it has travelled through on its journey to reach us," Heymans said. "We hope that by mapping more dark matter than has been studied before, we are a step closer to understanding this material and its relationship with the galaxies in our universe."

A close match


Read Comments

View reader comments | Comment on this story

  • Weekly review of global news and ideas
  • Balanced, insightful and trustworthy
  • Subscribe in print or digital

Special Offer


Doing Good


What happens when ordinary people decide to pay it forward? Extraordinary change...

Danny Bent poses at the starting line of the Boston Marathon in Hopkinton, Mass.

After the Boston Marathon bombings, Danny Bent took on a cross-country challenge

The athlete-adventurer co-founded a relay run called One Run for Boston that started in Los Angeles and ended at the marathon finish line to raise funds for victims.

Become a fan! Follow us! Google+ YouTube See our feeds!