Skip to: Content
Skip to: Site Navigation
Skip to: Search


How Mercury is like Saturn (and other surprises from NASA's orbiter)

NASA's Messenger craft has been orbiting Mercury for 88 days. Among its findings: a Saturn-like magnetic field, high concentrations of sulfur, and some support for the notion there is water ice in shadowed craters.

(Page 2 of 2)



"We do not fully understand this yet," says researcher Larry Nittler, also with the Carnegie Institution. But, he adds, it almost certainly means that "Mercury was formed from building blocks fundamentally chemically different from those that formed the Earth and moon."

Skip to next paragraph

A volcanic past

The high concentrations of sulfur also would have led to explosive eruptions of volcanoes on Mercury. Evidence for this volcanism shows up in the new images of the surface that Messenger is beaming back.

"The presence of sulfur should tell us some new things about volcanism on Mercury," Dr. Nittler says.

It also is narrowing the range of possible explanations for one of Mercury's odd traits: Its core is unusually large for an object of Mercury's size, taking up a higher proportion of the interior than Earth's core occupies.

One explanation offered for this, Nittler says, is that Mercury started out with the right proportions. But it is so close to the sun that during the star's youth, when it was hotter, a lot of surface material evaporated.

But if that is the case, he continues, the abundance of sulfur, as well as of potassium and sodium, would be far lower than the abundances Messenger is measuring.

Scratch that idea, he suggests.

On the other hand, some of the Messenger measurements are broadly consistent with a scenario in which Mercury formed much like Earth did, but got whacked by another planet-size object, knocking off much of its original crust.

"This is a model that's still in the running," Nittler says.

Water ice in northern craters?

One of the major quests for the mission is to see whether permanently shadowed craters on the toastiest planet in the solar system cradle deposits of water ice.

This has been a source of speculation for 20 years, ever since radar beamed from Earth probed polar craters and detected signatures suggesting water ice is present, Dr. Solomon says.

Messenger's first test to see if water ice is present has come from the craft's laser altimeter.

The team targeted one crater showing the intriguing radar returns – a crustal dimple about 15 miles across in the planet's north polar region. After gathering data from several passes over the crater, the team built a contour map of the feature. Then they calculated the amount of sunlight the floor of a crater that deep and at that latitude would receive.

"This crater passes the test," Solomon says, noting that the portion of the floor in permanent shadow coincides with a portion of the crater floor showing a bright signature on radar that some have interpreted as water ice.

This result has not produced the smoking gun, he cautions, but it does make a strong argument for aiming Messenger's spectrometers at these areas to see if they can sniff out chemical signatures indicating water.

The approach is similar to the techniques used to discover water ice on the floors of high-latitude craters on the moon.

Indeed, the past several years have revealed that a moon once thought to be "dead" is far more interesting and dynamic than anyone though a decade ago.

The same is proving to be true for Mercury.

"We're finding out that Mercury really is a world in and of its own," says Ralph McNutt, a researcher at the Johns Hopkins University's Applied Physics Laboratory and the mission's project scientist. "Just like the Earth, it has its own personality. As we look at Mercury close up ... we're managing to explore a new world for the first time."

Permissions

Read Comments

View reader comments | Comment on this story