The ‘holy grail’ of biofuels now in sight
Long-promised cellulosic ethanol is in modest production, but hurdles remain.
Mark Stowers, research and development director of POET, America’s largest ethanol producer, says cellulosic ethanol technology is ready for prime time.
Mark Clayton
Scotland, S.D.
With one foot planted in a pile of corn cobs, Mark Stowers explains how agricultural waste, transformed into ethanol, will turbocharge the US economy, boost its energy security, and help save the planet, too.
Skip to next paragraphSubscribe Today to the Monitor
This holy grail of biofuels, called cellulosic ethanol, has been “five years from commercialization” for so long that even Dr. Stowers admits it’s become a joke.
But now the research director for POET, the nation’s largest ethanolmaker, based in Sioux Falls, S.D., says that despite bad economic news and major obstacles, cellulosic’s time is near. Other scientists agree.
Corn-based ethanol, which many critics argue does not do enough to slow climate change, is nearing US production limits. In Washington, cellulosic ethanol is gaining political traction. And cellulosic technology seems ready for prime time – at last.
‘Cellulosic ethanol is real’
The proof, Stowers says, lies inside a nearby windowless, high-roofed single-story metal building. Filled with a maze of pipes and vats, this $8 million test facility is a miniature cellulosic ethanol plant that pumps out 20,000 gallons a year of nearly clear alcohol extracted from cobs like the ones beneath his feet.
“This pilot plant shows cellulosic ethanol is real – that the technology is here,” Stowers says. “Ultimately, cellulosic will allow us to make significant inroads to replacing oil for our nation’s gasoline needs.”
The 2007 Energy Independence and Security Act Renewable Fuels Standard (RFS) calls for boosting production of biofuels to 36 billion gallons a year by 2022 – about 15 billion gallons of it corn ethanol, the rest cellulosic. (By contrast, the US produced about 9 billion gallons of corn ethanol last year.) That would replace about one-fifth of the nation’s gasoline needs without displacing current crops.
But looking forward, biofuels could play a far larger role. By 2030, biofuels may reach 60 billion gallons, according to a new report released Feb. 10 by Sandia National Laboratory. That would require 480 million tons of biomass, including 215 million tons of dedicated energy crops like switchgrass. Such fuel crops would require 48 million acres of what is now pasture or idle land, the report says.
Such a shift would slash annual US tailpipe carbon dioxide emissions by 260 million tons a year – about equal to the emissions from 45 coal-fired power plants. Cellulosic ethanol feedstock crops would require little or no irrigation, a big advantage over corn. The cost: about $250 billion, the same or less than that of boosting US oil production by the same amount.
One-third of nation’s needs by 2030?
With a few key technology improvements, the United States could do even better, creating up to 90 billion gallons of ethanol by 2030, enough to meet one-third of the nation’s transportation fuel needs, Sandia found. In that scenario, about 75 billion gallons would be cellulosic fuel. Just 15 billion gallons a year would come from corn, the report said.
Getting there will be a huge challenge. The handful of pilot cellulosic plants in the US produce maybe 1 million gallons a year. Production would have to be ramped up a thousandfold to meet the 2013 federal goal of 1 billion gallons. That seems unlikely, given the economy’s tailspin.
Of the six commercial-scale cellulosic biofuel plants funded by the US Department of Energy (DOE), two have bowed out. Another smaller-scale project supported by DOE, a partnership between Lignol Energy of Vancouver and Calgary-based Suncor, withdrew Feb. 9.
Not on track at the moment








Become part of the Monitor community