Skip to: Content
Skip to: Site Navigation
Skip to: Search


Meeting nuclear energy's challenge

By David F. SalisburyStaff writer of The Christian Science Monitor / March 1, 1984



San Francisco

Shoreham. Marble Hill. Zimmer. Nuclear power plants representing billions of dollars in investments. They are also stark reminders that low-cost electricity from the atom is easier promised than delivered. Some utilities have been successful at building and operating nuclear plants. But others are staggering under nuclear-generated debts, converting nearly completed facilities to coal, and even abandoning nuclear projects. Can a 19th-century industry learn to manage 20th-century technology?

Skip to next paragraph

There is a subtle, almost subliminal message in the design of a nuclear power plant's control room.

The fact that its basic layout and confusion of dials, gauges, switches, and illuminated warning signs are strikingly similar to those found in decades-old conventional power stations clearly shows the heritage of the electric utility industry.

With roots in the inventions of Thomas Edison and Nikola Tesla, this industry is more than a century old and generally set in its ways. Like its control rooms , many of its attitudes, methods, and procedures change with near-glacial slowness.

In recent years, this has had mostly minor effects on the industry's ability deliver electricity safely and at reasonable prices. In the case of nuclear power, however, it is one of the major reasons why the near-heroic engineering effort to harness the atom for peaceful purposes is foundering on the triple shoals of economics, regulation, and public perception.

This is not to say that the utility industry is the only major actor on the nuclear power stage. As the congressional Office of Technology Assessment (OTA) put it recently in its report entitled Nuclear Power in an Age of Uncertainty: ''There are at least . . . seven sides to the coin of each issue.''

Besides the utilities, these principal players include utility investors, state public utility commissions, nuclear reactor manufacturers, antinuclear critics, the Nuclear Regulatory Commission (NRC), and the public.

But ''most of nuclear energy's problems stem from the fact that we have a 19 th-century industry trying to cope with a 20th-century technology,'' argues Victor Gilinsky, an NRC commissioner and longtime industry critic.

There is growing agreement that a fundamental mismatch exists between the technology and the institutions overseeing it. This stems not only from the industry's ultraconservatism: Even today it invests only about 0.6 percent of its sales in research and development. It is also due to the industry's extreme diversity, a legacy of pitched political battles waged early in this century between the advocates of public and private power. This has left a patchwork of institutions that includes rural electric cooperatives, tiny municipal utilities , large, private companies, and federal organizations like the Tennessee Valley and Bonneville Power Authorities. Not only do these embody a wide range of management philosophies and capabilities, but a bewildering variety of regulatory arrangements.

To appreciate the problem this poses, a few facts about nuclear fission technology are necessary. Despite all the engineering effort lavished on nuclear reactors, they have proved far more demanding to build and operate than their designers anticipated. One cubic foot within a reactor core generates as much power as 1,000 cubic feet of raging flame in a coal-fired boiler. As a result, things can happen very rapidly. In the case of certain malfunctions, plant operators have but minutes to figure out what is wrong and correct it.